Troisième Journée Technique d'information et de retour d'expérience de la gestion des sols pollués

Les Diagnostics - Objectifs, enjeux & moyens

Vendredi 19 septembre 2008

L'Approche Géostatistique pour la Caractérisation de Sites et Sols Pollués

- Méthodologie et Cas d'Applications -

Nicolas Jeannée

Jean-Jacques Péraudin

Contact: peraudin@geovariances.fr 01.60.74.90.99 / 06.07.05.96.69

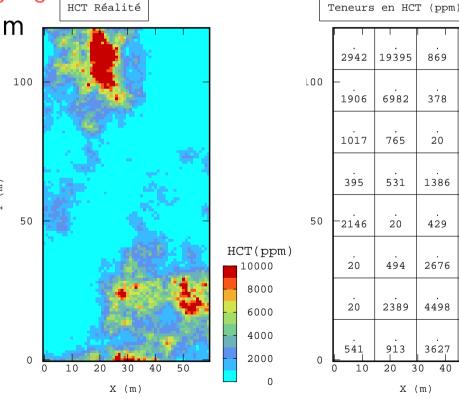
Plan

- Un peu d'histoire...
- Méthodologie géostatistique
- Application à un site TOTAL Dépôts Passifs
- Autres applications
- Conclusions (avantages/limites) et remerciements

Un peu d'histoire...

- Approche géostatistique largement répandue en géosciences depuis les années 50 (exploration minière et pétrolière/gazière, hydrogéologie)
- Frémissements depuis 15-20 ans en sites et sols pollués, « préjugés »
- Plusieurs thèses : Nicolas Jeannée (2001), Hélène Demougeot-Renard (2002)
- Application sur des cas réels sites et sols pollués (SSP) depuis 5 ans
- Journées ADEME (Déc. 2002) : Rencontres Industrie-Recherche en SSP
- Groupe de travail GEOSIPOL créé en 2004 (Ecole des Mines de Paris, FSS, GEOVARIANCES) pour promouvoir l'application des approches géostatistiques.
 - Plus de 20 membres : institutionnels, industriels, bureaux d'études. Réalisation de fiches méthodologiques et de cas de démonstration.
 - Site web: http://www.geosipol.org
- Journées ADEME (Déc. 2006): Projet DIFPOLMINE
- 2007-2008 Nouveaux textes méthodologiques : privilégier la mesure !

Exemple synthétique :


-Contamination en HCT.

-Seuil considéré en HCT : 2000 mg/kg

-Maillage systématique 15 m x 15 m

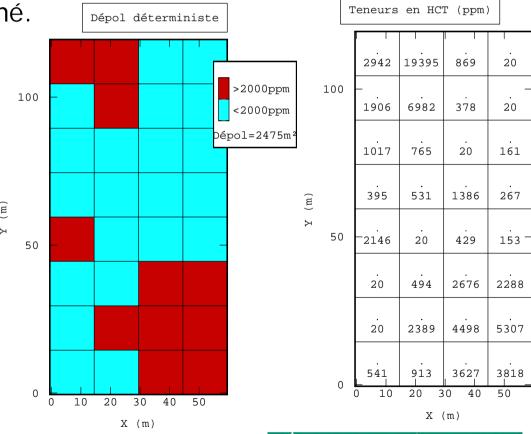
• Question posée :

-Comment sélectionner les mailles saines/contaminées ?

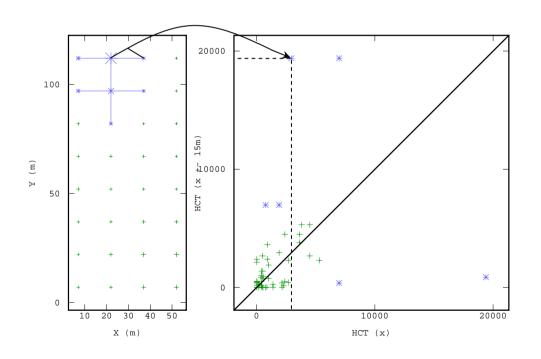
20

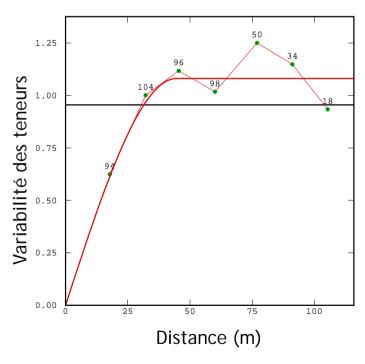
20

161

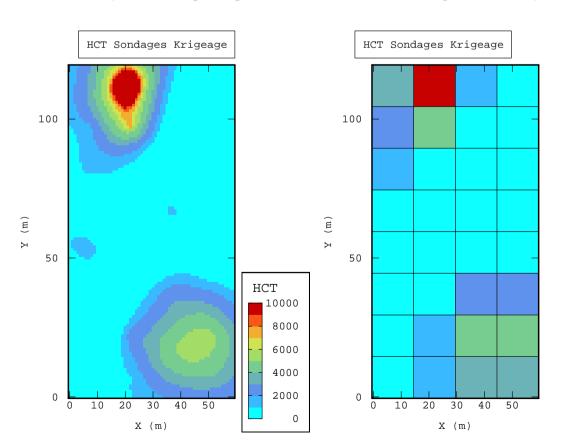

267

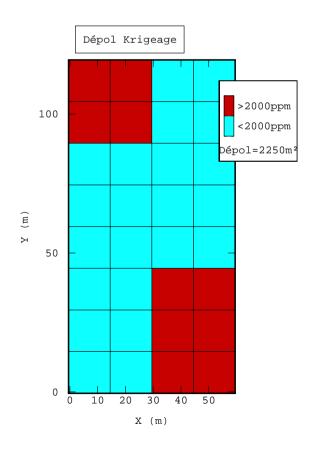
153


2288


5307

- Approche classique :
 - Comparaison résultats analytiques vs seuil.
 - Calcul du volume contaminé.
 - Avantage : simplicité...
 - Inconvénients
 - Hypothèses :
 - indépendant du contexte
 - pas d'erreur de mesure
 - maille = échantillon
 - effet de support ignoré
 - Pas d'appréciation de l'incertitude...

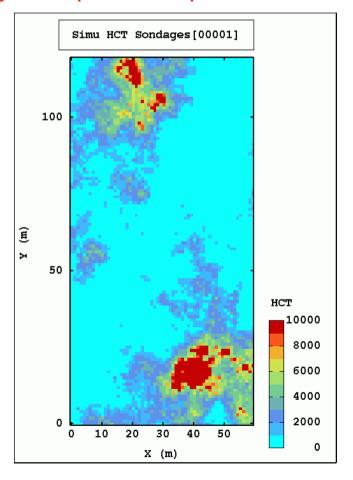

- Approche géostatistique par krigeage :
 - -Evaluer la cohérence spatiale entre les mesures
 - -La décrire par le calcul du variogramme

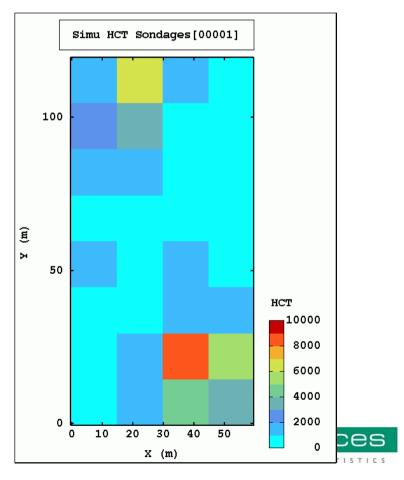


- Approche géostatistique par krigeage :
 - -Evaluer la cohérence spatiale entre les mesures
 - -La décrire par le calcul du variogramme
 - -Estimer par krigeage les teneurs moyennes pour chaque maille

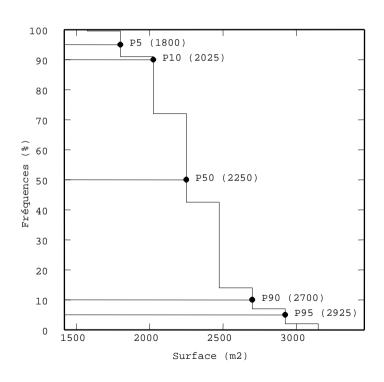
- Approche géostatistique par krigeage :
 - Evaluer la cohérence spatiale entre les mesures
 - La décrire par le calcul du variogramme
 - Estimer par krigeage les teneurs moyennes pour chaque maille

Avantages :


- Prise en compte de la variabilité spatiale de la pollution
- Distinction entre support d'échantillonnage et de dépollution


• Limites :

- Considérer le krigeage seul conduit à lisser la variabilité réelle et à négliger l'incertitude associée à toute interpolation.


- Approche géostatistique par simulations :
 - -Reproduire la variabilité locale (variogramme), à la fois ponctuellement et en moyenne pour chaque maille.

Estimation des volumes non compatibles :

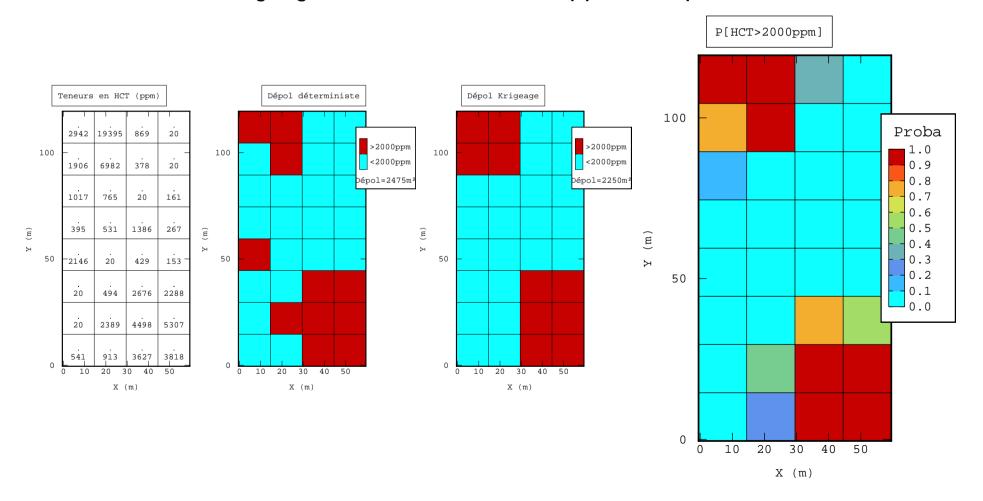
 Globalement, par comparaison de chaque simulation avec le seuil, on déduit la distribution des volumes contaminés.

Volume contaminé :

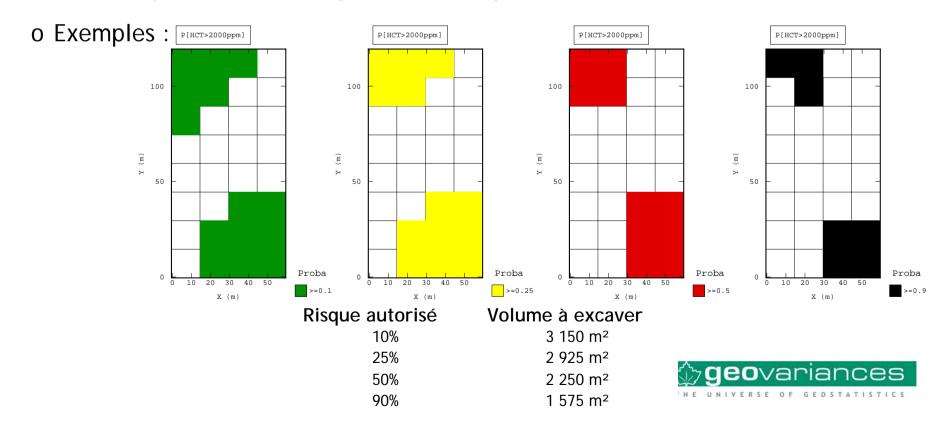
-Optimiste (P5) : 1800 m² -Probable (P50) : 2250 m²

-Pessimiste (P95) : 2925 m²

Pour mémoire :


-Déterministe : 2475 m²

-Krigeage : 2250 m²



Estimation des volumes non compatibles :

-<u>Localement</u>, on évalue pour chaque maille le risque de dépasser le seuil de 2000 mg/kg, contrairement aux approches précédentes...

- Estimation des volumes non compatibles :
 - -Localement, on évalue pour chaque maille le risque de dépasser le seuil de 2000 mg/kg, contrairement aux approches précédentes....
 - o Le volume de terres dont on envisage l'excavation dépend du risque que l'on accepte de laisser en place des sols potentiellement contaminés !

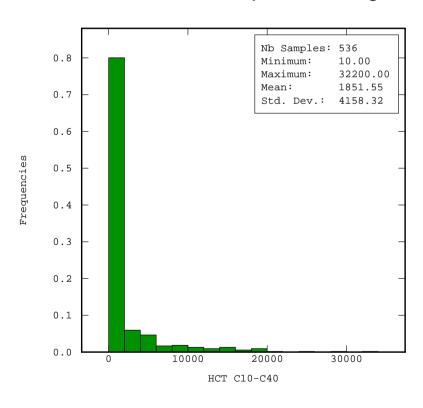
Application à un cas réel

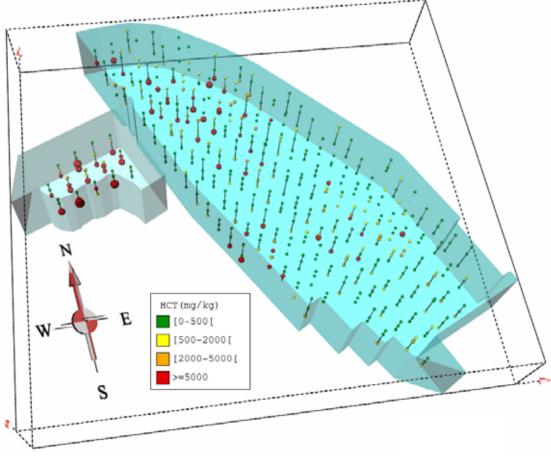
- Contexte et objectifs
- Analyse exploratoire des données
- Cartographie des teneurs en HydroCarbures Totaux (HCT)
- Estimation des volumes contaminés
- Premières conclusions

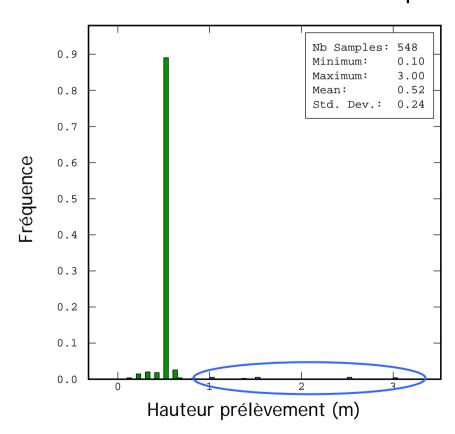
Application à un cas réel

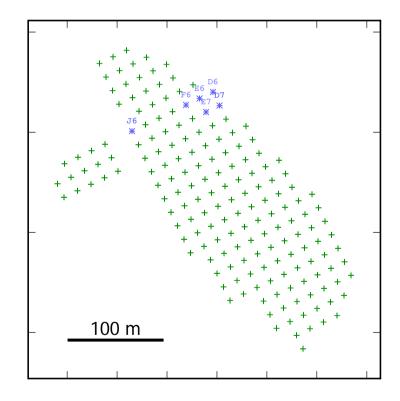
Contexte

- Ancien dépôt pétrolier TOTAL.
- Superficie ~ 5ha.
- Contamination en hydrocarbures liée à l'activité du site.
- Polluant considéré : HCT (C10-C40).
- Seuil considéré : 5000 mg/kg.

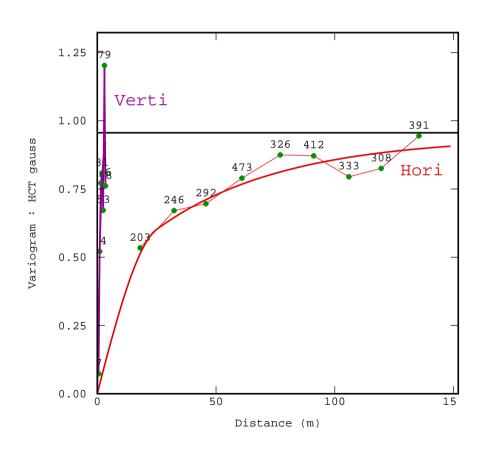

Objectifs de l'étude géostatistique

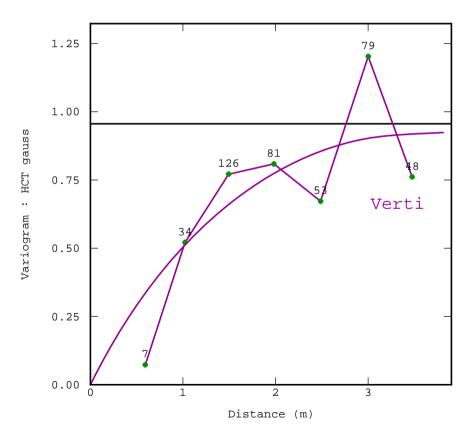

- Cartographier la contamination en HCT.
- Estimer les volumes contaminés.
- Déterminer la compatibilité des terres avec le seuil de 5000 mg/kg.


- Localisation et distribution des teneurs en HCT (C10-C40) :
 - -Maillage systématique 15m x 15m
 - -3 échantillons par sondage

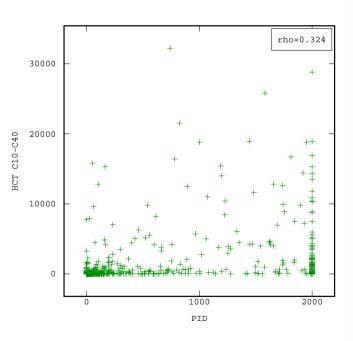


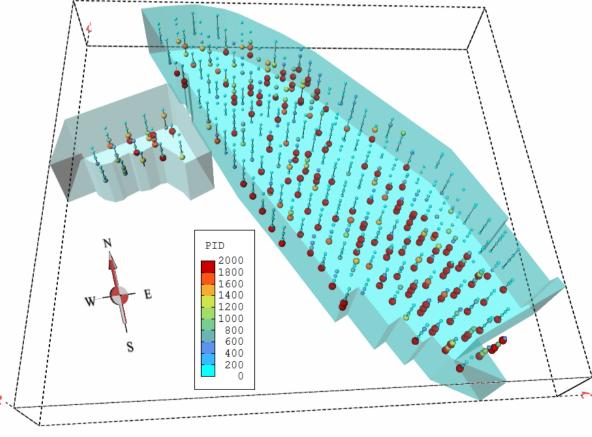
■ Supports de prélèvement :

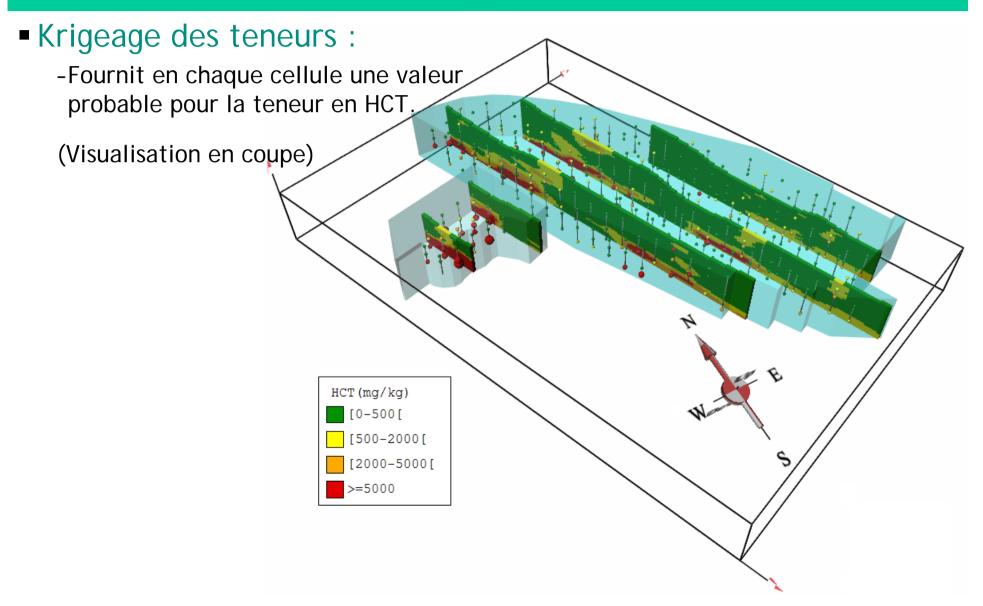

-Globalement : 0.5 m hormis quelques prélèvements au nord-est.



■ Structure spatiale des teneurs en HCT :






Relation HCT / PID (mesures de gaz) :

-En cas de corrélation avec les teneurs en HCT, intégrer une variable auxiliaire échantillonnée de façon plus dense permet d'affiner la modélisation. Dans le cas présent, corrélation médiocre...

Application: cartographie teneurs HCT

Application: volumes contaminés HCT

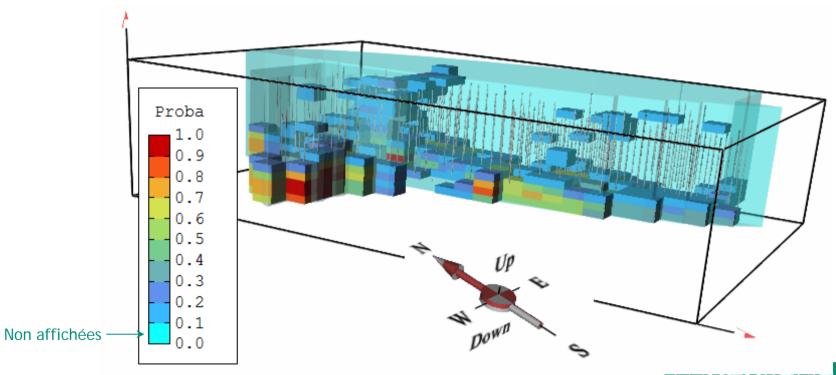
Simulation des teneurs : -250 simulations géostatistiques : 2 exemples -Passage au maillage de dépollution (15m x 15m x 0.5m). HCT (mg/kg) [0-500[[500-2000] [500-2000[

Application: volumes contaminés HCT

Volumes contaminés :

-Seuillage de chaque simulation à 5000 mg/kg, calcul du volume contaminé et analyse statistique de la distribution des volumes obtenus.

Altitud	e NGF	≥22m	22-24m	24-26m	26-28m	≥28m
Volume total		246 600 m ³	74 700 m ³	74 700 m ³	72 788 m³	24 413 m³
Q5		18 788	15 188	675	563	225
Q10		20 138	15 975	900	788	225
Q50	(m ³)	22 950	18 675	1 688	1 688	675
Q90		25 988	21 375	2 700	2 813	1 463
Q95		26 775	22 275	2 925	3 263	1 688


Exemple de lecture : il y a 95% de chances d'avoir un volume contaminé inférieur à 26 775 m³ pour la parcelle, parmi les 246 600 m³ qu'elle contient.

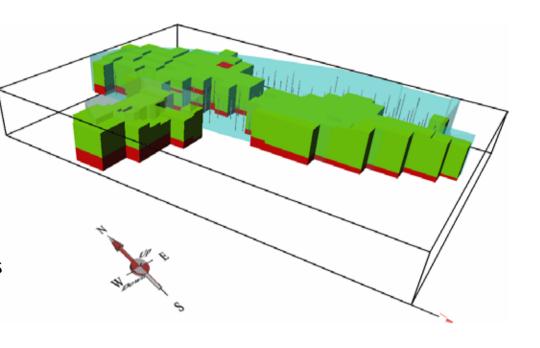
Application: volumes a excaver et à trier

- Calcul de la probabilité de dépassement du seuil :
 - -La mise en œuvre de la dépollution nécessite que l'on puisse déterminer quelles mailles dépassent le seuil !

Proba[HCT>5000mg/kg]

Application : volumes d'accessibilité

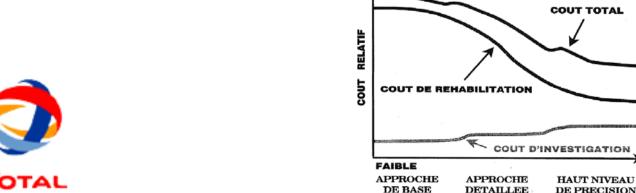
Principe :


Certaines mailles, bien que saines, doivent être excavées afin d'accéder aux mailles contaminées plus profondes.

On distingue ainsi deux types de volumes :

 à trier, constitué des mailles présentant une probabilité de dépasser le seuil supérieure au seuil accepté pour laisser en place les terres (par exemple 25%),

 d'accessibilité, constitué des mailles pour lesquelles la probabilité est inférieure à 25% mais situées audessus des mailles à trier.


	Volume considéré (m³)				
	A trier	Accessib.	Total		
P5	73 463	125 325	198 788		
P10	52 763	132 188	184 950		
P25	30 375	114 300	144 675		
P50	15 300	67 950	83 250		

Conclusions de l'application

Bilan de l'application :

- Analyse exploratoire des données, structuration nette de la contamination.
- Post-traitements : estimation globale des volumes contaminés et locale de la probabilité de dépassement du seuil (5000 mg/kg en HCT).
- Localisation préférentielle de la contamination en profondeur conduit à des volumes à trier et d'accessibilité très élevés.
- Investigation détaillée et valorisation des données ⇒ estimation fiable du coût de dépollution probable et des incertitudes associées.

(cf. D. Hubé)

Conclusions de l'application

Bilan de l'application :

- Analyse exploratoire des données, structuration nette de la contamination.
- Post-traitements : estimation globale des volumes contaminés et locale de la probabilité de dépassement du seuil (5000 mg/kg en HCT).
- Localisation préférentielle de la contamination en profondeur conduit à des volumes à trier et d'accessibilité très élevés.
- Investigation détaillée et valorisation des données ⇒ estimation fiable du coût de dépollution probable et des incertitudes associées.

Remerciements :

- Céline GALANTIN et Jean-Jacques CESTARI (TOTAL Dépôts Passifs)

Conclusions : apports de la géostatistique

Photo Biogénie

Cartographie de la contamination

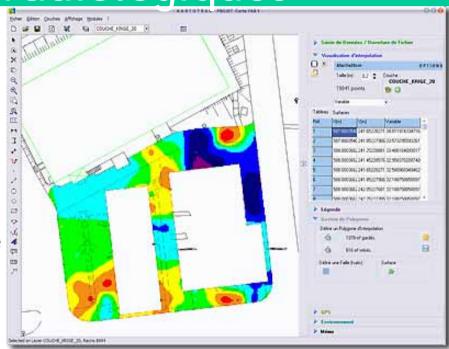
- Optimisation de stratégies d'échantillonnage (sols, réseau de piézomètres).
- Analyse exploratoire et Contrôle Qualité des données
- Prise en compte de la structure spatiale de la contamination (hétérogénéité).
- Approche applicable au cas de contaminations multiéléments.
- Intégration des informations auxiliaires (historique, mesures terrain type XRF ou autre, paramètres organoleptiques, autres polluants, ...).
- Détermination des fonds géochimiques locaux.

Conclusions : apports de la géostatistique

Photo Biogénie

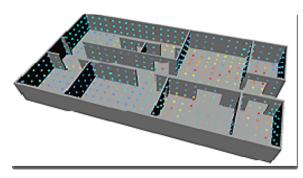
Evaluation des volumes contaminés

- Prise en compte du support de dépollution.
- Distinction entre volumes réellement contaminés et volumes à traiter (cartes de risque de dépassement de seuils de réhabilitation).
- Quantification des incertitudes sur les volumes contaminés.
- Afin de se rapprocher d'un optimum financier, aide à la définition :
 - de seuils de dépollution
 - d'une maille de dépollution
- Estimation plus réaliste des coûts de dépollution !


Limites Approche Géostatistique

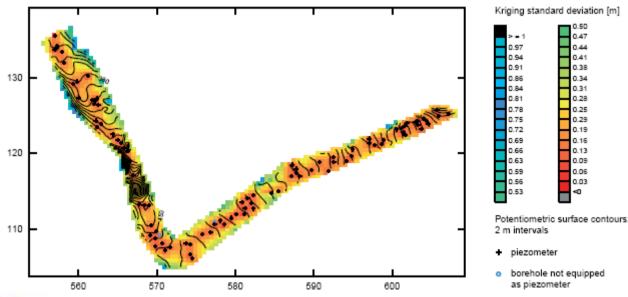
- Cas de contaminations très hétérogènes
 - Exemple typique : remblais remaniés.
 - Aucune sélection possible de mailles saines/contaminées à partir d'un maillage même fin ⇒ décision globale!
 - Pas de modélisation géostatistique sophistiquée... mais la géostatistique permet de détecter très tôt, par un échantillonnage adapté, cette situation (absence de continuité spatiale) et d'éviter une catastrophe financière!
 - Autre exemple : anciennes structures enfouies.
 - Intégration dans le modèle géostatistique si leur localisation est connue,
 - sinon : augmentation de la variabilité spatiale des teneurs et des incertitudes !
- Cas de pollutions présentant une dynamique temporelle forte
 - Complémentarité géostatistique / modélisation physico-chimique.
- Cas de petits sites, simples et avec peu d'investigations
 - Quantifier la variabilité spatiale de la contamination n'est bien entendu pas systématiquement nécessaire.
 - Se méfier d'interpolations ou prédictions spatiales rapides!

Autres applications : contaminations radiologiques


- Cadre : Démantèlement et assainissement de sites nucléaires (Cea, Edf, Areva)
- Objectif: Cartographie d'aires extérieures (sols) et d'installations nucléaires (bétons) contaminées par des radionucléides (137Cs)
- Méthodologie : techniques multivariables de co-krigeages, variances de krigeage

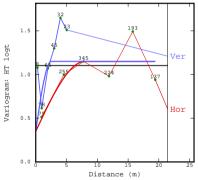
Résultats:

- orientation de campagnes d'échantillonnage
- intégration de données (spectrométrie gamma in situ, carottages, bouchardages...)
- contrôle de la dépollution

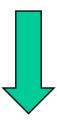


Autres applications : optimisation d'un réseau de piézomètres

- Cadre : Surveillance de l'aquifère de la vallée Rhône-Alpes de Sierre jusqu'au lac de Genève (CREALP)
- Objectif : Optimiser le réseau de piézomètres, afin de réduire le coût de surveillance sans diminuer la qualité de la carte des potentiels
- Méthodologie : krigeage intrinsèque, variance de krigeage
- Résultat : Réduction de 20% du nombre total de piézomètres automatiques



En Conclusion...



Mesures + Valorisation Géostatistique

Maîtrise des incertitudes

Economies Financières

Merci de votre attention ...

....et pour vos questions!

